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LETTER TO THE EDITOR

Close-packed configurations, ‘symmetry breaking’, and the
freezing transition in density functional theory

Yaakov Rosenfeld†
H H Wills Physics Laboratory, Bristol University, Royal Fort, Tyndall Avenue, Bristol BS8 1TL,
UK

Received 8 August 1996

Abstract. It is shown that the density functional theory for the non-uniform hard-sphere fluid,
which employs the geometrically based fundamental-measure free-energy functional, (1) has the
mechanism to locate situations of hard-sphere closest packing, (2) features ‘symmetry breaking’
that separates the solid-like and liquid-like solutions for the density profile equation, and (3)
contains the free-volume cell theory as a special limit case.

The density functional theory has been the object of intensive development in recent years
as a most successful and widely applicable approach to non-uniform classical fluids [1, 2].
The well studied hard spheres serve as the almost standard reference system, and provide
an important test for all model functionals [3]. Configurations of densely packed hard
spheres, in different effective dimensionalitiesD, provide the ultimate test for any free-
energy model for the inhomogeneous hard-sphere fluid, and are of particular importance for
addressing the phase diagram of hard spheres in confined geometries. Very recent Monte
Carlo simulations of hard spheres confined between narrow plates in quasi-2D situations
located both a fluid–solid transition and solid–solid transitions between buckled, layered,
and rhombic crystals [4]. Colloidal dispersions confined between two glass plates have
been the object of recent intensive experimental investigations [5, 6], and these predicted
transitions should be observable. As already demonstrated in the pioneering works [7], such
solid–solid transitions are dictated by considerations of the close-packed density for each
different configuration. This provides thea priori justification for applying the free-volume
cell model [8, 9], which was indeed found [4] to give reliable results for the topology of
the phase diagram of confined hard-sphere systems.

In order to provide aunifying description of the fluidand solids in all such confined
situations within density functional theory, we need to construct a comprehensive free-energy
functionalF [ρ(r)] of the average one-body density,ρ(r). This functional must have built-
in mechanisms to locate close-packed configurations for arbitrary effective dimensionality,
and to have correct properties of dimensional crossover. For correct description of densely
packed hard spheres, in particular, when each particle can be viewed as confined in a
fluctuating cage of its nearest neighbours, this free-energy functional should provide reliable
results for the ‘0D limit’ corresponding to a cavity that cannot hold more than one particle.
Finally, the density functional description of a solid near closest packing raises the issue of
symmetry change between the solid and the fluid: when the solid free energy rises sharply
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near closest packing, it becomeslarger than that for the uniform fluid at the same average
density. Thus, the free-energy functional must contain a mechanism of ‘symmetry breaking’
that will separate the solid-like and liquid-like solutions for the density profile equation.

On the basis of the density expansion [10] or the smoothed-density approximation
[11], many functionals were developed [3] which found reasonably good agreement with
simulations, for the melting and freezing densities, and for the fcc crystal equation of state at
densities considerably below closest packing [12, 13]. But these functionals, which are built
upon the 3D bulk fluid data as essentially numerical input, do not contain the appropriate
building blocks in order to incorporate the 0D limit and the dimensional crossover, and
they do not have mechanisms for locating closest packing and for ‘symmetry breaking’.
These kind of functionals cannot be expected to give physically reliable results for the
phase diagram of confined hard spheres.

The geometrically based fundamental-measure functional (FMF) [14] was the first to
derive the uniform (bulk) fluid properties as a special case, rather than employing them
as input, and to contain the correct dimensional crossover. It was recently shown [15]
that when adjusted to reproduce the exact 0D limit, the FMF gives accurate results for the
3D fluid–solid transition (predicting the correct vacancy concentration of the solid) and for
the equation of state of both the fcc and bcc crystals all the way from freezing to near
closest packing, and becomes generally reliable in situations of extreme confinements. In
this letter I show that the FMF has the desirable properties mentioned above to make it
applicable to densely packed confined hard spheres. (i) The free-volume cell theory is
containedin the density functional theory that employs the FMF. (ii) The FMF has the
mechanism to locate situations of hard-sphere closest packing. (iii) The FMF features a
‘symmetry breaking’ that separates the solid-like and liquid-like solutions for the density
profile equation. These results are obtained as general properties of the FMF, independent
of further fine optimizations of the functional.

The density profileρ(r) subject to an external potentialu(r) is obtained by solving the
Euler–Lagrange equationsδ�[ρ(r)]/δρ(r) = 0 which correspond to the minimization of
the grand potential,�[ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)] + ∫

dr ρ(r)[u(r) − µ], whereµ is
the chemical potential. The ideal-gas free energy is given by the exact relation

Fid [ρ(r)] = kBT

∫
dr ρ(r){ln(ρ(r)λ3) − 1} (1)

where λ = (h2/2πmkBT )1/2 is the de Broglie wavelength. The central (and generally
unknown!) quantity in density functional theory is the excess free energy,Fex [ρ(r)], which
originates in interparticle interactions. In the special case of the single-component system
of 3D hard spheres of radiusR, the FMF has the following form [14]:

Fex [{ρ(r)}]
kBT

=
∫

dx 8[{nα(x)}] (2)

where8 is a function of the following three weighted densities:nα(x) = ∫
ρ(x′)w(α)(x −

x′) dx′, which aredimensionalquantities. The weight functionsw(α), α = 3, 2, V 2, are [14]
characteristic functions for the geometry of the sphere: two scalar functions, representing
the characteristic functions for the volume and the surface of a particle,w(3)(r) = 2(R−r),
w(2)(r) = δ(R − r), and a surface vector functionw(V 2)(r) = (r/r)δ(R − r). In
particular,n3(x) is a local packing fraction which, for the uniform (bulk) fluid of density
ρ̄, is equal to the total packing fractionη = ρ̄(4π/3)R3. Using the dimensionless
vector ξ(r) ≡ nV 2(r)/n2(r), ξ = |ξ|, the following excess free-energy density was
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derived [14, 15]:

8(n2, n3, ξ) = 81 + 82 + 83

81 = − n2

4πR2
ln(1 − n3)82 = n2

2(1 − ξ2)

4πR(1 − n3)

83 =
1
3n3

2(1 − ξ2)3

8π(1 − n3)2
.

(3)

This specific form features the Percus–Yevick [16] and scaled-particle [17] description of the
bulk fluid, ρ(r) = ρ0, and is exact [15] in the strict 0D limit,ρ(r) = ηδ(r), whereη 6 1
is the average occupation of the cavity, givingf (0D)(η) = Fex/kBT = η+ (1−η) ln(1−η).
The search for the optimal form of the FMF continues. Various functions of the components
of ξ can be invoked in order to obtain specific desirable properties of the functional [15],
but these do not affect the present discussion.

How is the free-volume theorycontainedin the density functional theory that empl-
oys the FMF? Consider configurations of highly localized and densely packed spheres
characterized by density distributions,ρ(r) = ∑

l ρ1(|r − Rl|), composed of spherically
symmetric normalized peaks,ρ1(x > 1) = 0, of narrow width1 � R, around fixed
sites{Rl} of nearest-neighbour distanced. Defineδ = 1/R � 1, and the ‘free distance’
[9] a = (d − 2R)/2 � R. The ‘ideal-gas’ free energy takes the formFid/NkBT =
−3 lnδ + constant. The weighted densities are given bynα(x) = ∑

l n
(α)
1 (|x − Rl|), where

the functionsn(α)
1 (t) are: n

(3)
1 (t < R − 1) = 1, n

(3)
1 (t > R + 1) = 0, ∂n

(3)
1 (t)/∂t 6 0,

n
(2)
1 (t < R − 1) = 0, n

(2)
1 (t > R + 1) = 0, n

(2)
1 (R − 1 < t < R + 1) = O(δ−1),

|n(V 2)
1 (t)| = n

(2)
1 (t)(1 − O(δ2)). The singular region wheren3 = 1 is excluded from

the integration in (2) by the definition ofn2. When 1 6 a then the excess free-energy
contributions from each site are identical, completely independent of the others, and given
by an integral over the spherical shellR − 1 < x < R + 1 of width 21, centred at a site
chosen as the origin,x = 0. They correspond to a cell model, where each cell contribution
is equal to the excess free energy in the 0D limit of a singly occupied cavity [15], which
should be equal toFex/NkBT = f (0D)(η = 1) = 1 for the exact functional. The specific
form (3) introduces a small error [15] and givesFex/NkBT = 1 − O(δ2). The total free
energy with1 6 a is minimized when1 is maximal, namely1 = a, and the total free
energy takes the familiar [9] free-volume form,F/NkBT = −3 ln(d − 2R) + constant,
which is dominated by the ‘ideal-gas’ part of the free-energy functional. In the density
functional cell limit, it is the ideal-gas part of the free energy that gives rise to the free-
volume pressure,PV/NkBT = (1− 2R/d)−1, which is apparently the correct high-density
limit, and dominates the hard-sphere fcc crystal pressure down to the melting density [18, 9],
while the excess-functional contribution to the pressure is zero. If we use the step form,
ρ1(x) = ρ

step

1 (x) ≡ 2(1 − x)/(4π13/3), and1 = a, the FMF functional gives exactly
the self-consistent free-volume result of Kirkwood and Wood [8]. Mathematically, the cell
picture can be obtained only when the weight functions have a range6R. Previous weighted
density functionals [3] employ weight functions of range>2R, and cannot produce a cell
picture.

How does this physically correct result1 ≈ a arise as a self-consistent solution for
minimizing the free energy? How does the FMF ‘know’ that two spheres are almost touching
one another? In order to answer these related questions, allow1 − a > 0, and consider
the lens-shaped overlap region of two neighbouring spherical shells described above. To
facilitate the discussion I useρstep

1 (x), for which n
(3)
1 (t) has a simple geometric meaning: it

is proportional to the overlap volume of two spheres, of radiiR and1, at separationt . From
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simple geometrical considerations the shell contributions of two nearest neighbours will give
rise to a singularityn3(x) = 1 only whena → 0 and1 → 0 simultaneously: when the big
sphere of radiusR is at distanceR from the small sphere of radius1, then as long asR is
finite, i.e.1/R 6= 0, the overlap volume is smaller than half the small-sphere volume. This
is the geometry that enables the(1 − n3(x)) singularities of the FMF to ‘detect’ touching
spheres in close-packed arrangements. Tedious but straightforward calculation shows that
settinga = 0 for δ = 1/R � 1 leads to a non-integrable singularity in the terms82 and83,
while 81 is integrable (i.e. one needs stronger-than-logarithmic singularity forD = 2, 3). It
is found that the1 dependence of the excess free energy is only through the ratio1/a. All
of the singularities are integrable if one sets1 ∝ a, before lettinga → 0. Each of the three
contributions to the FMF has a different1/a dependence, and the total integral behaves
like (1/a)s with exponents of the order of unity. Minimizing the total free energy one
gets the optimal value1MIN/a ≈ O(1), while Fex/NkBT is nearly constant, of order unity.
The divergence of the equation of state at closest packing, and the free-volume cell picture,
are thus obtained for the FMF by minimizing the total free energy with respect to1. Unlike
in previous density functional approaches to the equation of state of hard-sphere crystals
[12, 13], the FMF pressure is dominated by theideal-gascontribution all the way from
melting to closest packing. It is interesting to note that the variational property with respect
to the width parameter makes the pressure equal to the ‘standard’ density derivative of the
excessfree energy at constant width1 = 1MIN [19]. This useful relation [19] cannot,
however, be treated [13] as a detailed model for the pressure of the solid. Previous density
functionals [3, 12, 13] did not contain the mechanism to exclude the unphysical density
fields with overlapping hard spheres, namely situations that correspond ton3(x) > 1, and
these had to be excluded by imposingn3(x) 6 1 as an extra constraint on the density
profile equations. This issue was discussed [20] in the context of surface melting and the
crystal–fluid interfaces, but it was not raised in the context of the stability of the solidversus
the fluid, and the ‘symmetry breaking’.

In order to discuss the ‘symmetry breaking’, namely the division of the solutions of
the density profile equations into solid-like and liquid-like forms, consider specifically the
density functional description of the phase transition between the fluid and the fcc solid. The
modelling of the 3D solid by Gaussians,ρ1(x) = ρGauss

1 (x) = (α/π)3/2e−αx2
, proves highly

accurate [21], the high-density results which were obtained above for a general case do hold
with 1 ≈ 1/

√
α, and the pressure of the solid is dominated by the free-volume result [15].

Thus, instead of a general unconstrained search for the optimal density profile as a function
of the average density of the spheres, we follow the standard procedure [11, 12] and seek
the optimal values ofα, for Gaussian peaks located at fcc lattice sites. Like for many other
functionals [12], the FMF minimization at low densities leads to a single solution describing
a fluid (α = 0), while at higher densities, a second minimum appears, describing a solid
(αR2 ≈ O(25)). This second minimum is initiallyabovethe fluid minimum, but at still
higher densities (and correspondingly larger values ofα) it becomes the global minimum,
below the fluid free energy. Unlike the FMF, the earlier functionals [12, 13] do not have
a true correct divergence of the equation of state at closest packing, but they still feature
a very steep (yet finite!) rise in the region of closest fcc packing. At these high densities,
the solid-type minimum(αR2 � 1) is againabovethe fluid minimum(α = 0). Since at
these high densities the solid-type solution should be more stable, this result represents a
physical inconsistency of the functional,unlessthe two types of minimum belong to two
distinct branchesof the solution, separated by some kind of ‘symmetry breaking’. It is
interesting to note that this physical consistency problem has not been brought up before.
In all calculations of this type (i.e. locating the freezing transition by describing the solid
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with localized Gaussians) with previous functionals [12, 13], the constraintn3(x) 6 1 was
not imposed, and it was possible to changeα, at any fixed density, continuously from the
fluid minimum (α = 0) to the solid minimum(αR2 � 1), and yet the above physical
consistency problem (of the ‘solid’ minimum above the ‘fluid’ minimum) has never been
raised. The FMF, on the other hand, canonically excludes unphysical density fields with
overlapping spheres by automatically incorporating the constraintn3(x) 6 1. As a result
it features the required ‘symmetry breaking’ which separates between the solid-like and
fluid-like solutions of the density profile equations. That separation makes its physically
correct high-density solutions (which behave like the free-volume theory) also physically
consistent from the point of view of the logic of the density functional approach, even
though the ‘solid’ minimum is above the ‘fluid’ minimum.

While the analysis of the behaviour near closest packing involves only a pair of
nearest neighbours (the two closest to the lens-shaped shell-overlap region described above),
the ‘symmetry-breaking’ mechanism arises from contributions of a whole environment of
neighbouring density peaks which characterize the density distributionρ(x). Consider
again the Gaussian representation, as above, and recall the definition of the total packing
fraction, η = (4π/3)ρ̄R3, where ρ̄ is the average density, and some relevant densities
for fcc hard spheres are: closest packing:η = ηCP

f cc = π
√

2/6 ∼= 0.74; melting:
ηS = 0.545; and freezing: ηF = 0.494. Consider a high density, well above the
melting density, sayη ≈ 0.68, for which the FMF solid minimum is at the Gaussian
parameter(αR2)MIN ≈ O(1000) (i.e. the width1/R ≈ O(1/30)). Monitor the local
packing fraction,n3(x), as ρ(x) is modified by changing the value ofα (i.e. of the
width 1), and the relative position of the centres of the Gaussians in some neighbourhood
around one of the fcc sites chosen as the origin. For simplicity we take into account
only the contributions of the Gaussians at this site and its 12 nearest neighbours (NN),
n3(x) > n3(0) > n3(0)NN = n

(3)
1 (0) + 12n(3)

1 (d), with d/R ≈ 2(0.74/0.68)1/3 ≈ 2.06.
Initially, at very small values ofδ = 1/R, we haven3(0)NN = n

(3)
1 (0) = 1, and the 12

nearest neighbours essentially do not contribute. Asδ gradually increases, and as the 12
neighbours still do not contribute, then at some value ofδ around 0.5 the value ofn(3)

1 (0)

starts to decrease below 1, and further decreases asδ is increased. If the distance to the
centres of the nearest Gaussians is reduced forδ ≈ 1/30 thenn3(0)NN crosses 1 from below
for d/R ≈ 1.05. Ford/R ≈ 1.85 thenn3(0)NN crosses 1 from below whenδ increases to
≈0.5. This simple calculation provides examples for local ‘clusters’ of Gaussians that give
rise to n3(x) > 1. We expect that a random distribution of the centres of the Gaussians
will give rise to many situations with the forbiddenn3(x) > 1. For values of the widthδ
which are relevant for describing the solid with Gaussians, only configurations of relatively
high symmetry can exclude forbidden situations withn3(x) > 1. Thus, the FMF result
for the stable fcc solid obtained using the Gaussian representation for the density profile
(i.e. obtained as the free-energy minimum as a function of the Gaussian width), represents
a ‘solid’ branch of the solution of the density profile equations, separated from the ‘fluid’
branch by a region of ‘forbidden’ configurations of the centres of the Gaussians.

In all situations wheren3(x) approaches 1 from below, atδ > 0, the singularities in
the FMF occur at pointsx0 wheren3(x) is maximal, and thus 1− n3(x) ≈ O(x − x0)

2.
As a result, the first two terms of the FMF are integrable, while the third term is usually
not integrable. In any case, the logarithmic term, ln(1 − n3(x)), signals that the FMF does
not admit 1− n3(x) < 0. The space of density profiles composed of Gaussian distributions
is divided into solid-like and fluid-like profiles, as two distinct types of solution to the
density profile equation. All of the cases for which the maximal value ofn3(x) crosses
unity from below to yield(n3(x))MAX > 1 represent physically forbidden situations from
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the point of view of the FMF, separating solutions for the density profile equation, of two
types of spatial symmetry. This feature is not limited to fcc symmetry or to Gaussians,
and represents a general feature of the FMF functional that will emerge as various types
of density profile will be studied. It will be especially illuminating to use the FMF in
free-minimizationdensity functional calculations of the crystal–fluid interfaces and surface
melting [20].

The present study sheds new light on the role played by the local packing fraction,
n3(x), as defined by the fundamental-measure theory [14], and on the singularities of
the FMF atn3(x) = 1. These singularities locate close-packing configurations, and also
provide the ‘symmetry breaking’ that prevents the FMF functional from reaching unphysical
situations. In particular, the corresponding singularity of the bulk fluid equation of state at
the unphysical packing fractionη = 1, as if the spheres fill all of the volume (way above
ηCP
f cc

∼= 0.74 and the random close packing [22]ηCP
random ≈ 0.64), is pre-emptedby the

freezing transition, and is never reached. Thisη = 1 singularity was shown [23] to be a
universal asymptotic high-density singularity of the integral equation for the bulk fluid pair
structure, and was offered [23] as an ‘ideal-liquid’ starting point for describing dense fluids.
The present discussion offers a new way by which this singularity at an unphysical bulk
packing fraction dominates the physical properties of the system.

Finally, note that the discussion in this letter is generally valid also for the 2D version
of the FMF which applies to hard discs [14]. In 1D (hard rods) the FMF is identical [14]
to the exact functional [24], the free-volume equation of state is exact for all densities, and
the only singular situation occurs at the 1D closest packing.

I thank Pedro Tarazona for interesting discussions that stimulated me to study closest packing
analytically. I am indebted to Bob Evans for many helpful discussions and warm hospitality
at Bristol University. This work was supported by The Benjamin Meaker Foundation.
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